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Landau & Lifshitz showed that Kolmogorov’s EC t−"!/( law for the decay of isotropic
turbulence rests on just two physical ideas : (a) the conservation of angular momentum,
as expressed by Loitsyansky’s integral ; and (b) the removal of energy from the large
scales via the energy cascade. Both Kolmogorov’s original analysis and Landau &
Lifshitz’s reinterpretation in terms of angular momentum are now known to be flawed.
The existence of long-range velocity correlations means that Loitsyansky’s integral is
not an exact representation of angular momentum, nor is it strictly conserved.
However, in practice the long-range velocity correlations are weak and Loitsyansky’s
integral is almost constant, so that the Kolmogorov}Landau model provides a
surprisingly simple and robust description of the decay. In this paper we redevelop
these ideas in the context of MHD turbulence. We take advantage of the fact that the
angular momentum of a fluid moving in a uniform magnetic field has particularly
simple properties. Specifically, the component parallel to the magnetic field is
conserved while the normal components decay exponentially on a time scale of τ¯
ρ}σB# We show that the counterpart of Loitsyansky’s integral for MHD turbulence
is !x#v Qv dx, where Q

ij
is the velocity correlation. When the long-range correlations

are weak this integral is conserved. This provides an estimate of the rate of decay of
energy. At low values of magnetic field we recover Kolmogorov’s law. At high values
we find EC t−"/#, which is a result derived earlier by Moffatt. We also show that !x#v

Qs dx decays exponentially on a time scale of τ. We interpret these results in terms of
the behaviour of isolated vortices orientated normal and parallel to the magnetic field.

1. Introduction

In a previous paper (Davidson 1995) the author noted that the angular momentum
of a conducting fluid moving in a uniform magnetic field behaves in a particularly
simple way. Specifically, when the fluid is contained in a sphere, and it is permissible
to ignore shear stresses on the boundary, then the components of global angular
momentum parallel and perpendicular to the magnetic field, B, behave as

Hs(t)¯ const., (1.1)

Hv(t)¯Hv(0) exp [®t}4τ], (1.2)

where τ−"¯σB#}ρ. (1.3)

Here σ is the electrical conductivity of the fluid, ρ is its density, and H is defined as

H(t)¯&x¬udV.
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The derivation of (1.1) and (1.2) relies on the assumption that the magnetic Reynolds
number, Re

m
¯µσul, is small ; a condition almost invariably satisfied both in the

laboratory and in industrial applications.
Now a knowledge of the behaviour of H(t) can be useful in the context of decaying

turbulent flows. For example, one of the earliest predictions of the decay of
conventional isotropic turbulence, originally due to Kolmogorov but later reinterpreted
by Landau & Lifshitz, rests on just two physical ideas : (a) the conservation of angular
momentum, as expressed by Loitsyansky’s integral ; and (b) the removal of energy from
the large scales via the energy cascade (see, for example, Landau & Lifshitz 1959 and
Lesieur 1987). Now Kolmogorov’s original analysis, and Landau & Lifshitz
reinterpretation in terms of angular momentum, are both known to be flawed.
(Loitsyansky’s integral is not an exact representation of the angular momentum, nor
is it strictly conserved during the decay.) Nevertheless, the Kolmogorov}Landau
model still provides a surprisingly robust picture of the decay of isotropic turbulence
(see §6). Indeed subsequent research, based largely on intricate, phenomenological
closure models, has produced only a modest improvement in the prediction of
the decay of turbulent kinetic energy, E. (Recent closure models predict EC t−".$)

while Kolmogorov’s law gives EC t−"±
%$ (Lesieur 1987). Experiments indicate

EC t−".#&–t−"±
$').

MHD turbulence, of course, behaves quite differently from conventional turbulence.
The Lorentz forces induced by a uniform magnetic field not only accelerate the decay
of kinetic energy, via Joule dissipation, but also create an anisotropic eddy structure,
elongating the vortices in the direction of the magnetic field (see, for example, Alemany
et al. 1979). It is intriguing to ask whether Kolmogorov’s and Landau’s original
analysis can be adapted, with the aid of (1.1) and (1.2), to shed light on the nature of
decaying MHD turbulence. This question lies at the heart of this paper.

We start, however, by taking a step back. As a prelude to our analysis of decaying
turbulent flow, we examine the influence of a uniform magnetic field on single isolated
vortices, aligned parallel and perpendicular to the magnetic field. These simple model
flows provide the essential physical insight which allows us to interpret our results for
turbulent flow. In particular, we shall see that (1.1) and (1.2) impose strong constraints
on the manner in which isolated vortices may evolve. Vortices orientated normal to B
lose their angular momentum by developing thin interwoven layers of oppositely
signed vorticity, while those aligned with the magnetic field preserve their angular
momentum, despite Joule dissipation, by diffusing along the magnetic field lines. Their
energy then decays as (t}τ)−"/#. We shall see that both of these features manifest
themselves in more complex turbulent flows.

The structure of the paper is as follows. We start, in §2, by establishing the governing
equations and listing a number of simplifying assumptions (high Reynolds number,
low magnetic Reynolds number). Note that we place no restriction on the size of the
interaction parameter. Subsequently, in §3, we review the results of Moffatt (1967),
Sommeria & Moreau (1982), and Davidson (1995). These papers establish the
behaviour of vorticity and angular momentum in a uniform magnetic field and provide
the starting point for the analysis of §§4–6. Next, we examine the behaviour of simple
isolated vortices aligned parallel and perpendicular to the magnetic field. These simple
flows provide an insight into the altogether more complex problem of MHD
turbulence. Finally, the difficult problem of decaying turbulence is discussed in §§6–9.
Here we adapt Kolmogorov’s original analysis, as reinterpreted by Landau & Lifshitz
(1959), to MHD turbulence. This allows us to estimate the rate of decay of the
turbulence energy, and the rate of generation of anisotropy as measured by the
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moments of the velocity correlations normal and parallel to the magnetic field. Note
that our analysis is valid for arbitrary values of B and so covers the nonlinear case of
weak or moderate interaction parameters. We start, then, by stating the governing
equations of motion.

2. Governing equations

We are concerned with electrically conducting incompressible fluids : in effect, liquid
metals. Suppose that our liquid metal occupies a domain V which is infinite in extent
or else bounded by an electrically insulating surface S. We shall use both Cartesian (x,
y, z) and cylindrical-polar (r, θ, z) coordinates. In either case we assume that there is a
uniform magnetic field, B, imposed in the z-direction. Let the velocity field be u, the
current density be J, and a characteristic length scale be l. (In a turbulent flow, for
example, l might be the integral scale of the turbulence.)

It is well known that a static magnetic field tends to damp out movement in a
conducting fluid on a time scale of τ¯ ρ}σB# (see, for example, Shercliff 1965). In
effect, this follows directly from Ohm’s law. If we ignore the contribution to J from any
induced electrostatic field then JCσu¬B, so that the Lorentz force per unit mass is
FC®u}τ. Pressure forces apart, individual fluid particles then decelerate on a time
scale of τ. The ratio of τ to the characteristic advection time, l}u, gives the interaction
parameter

N¯σB#l}ρu. (2.1)

Typically, N is indicative of the relative sizes of the magnetic and inertial forces. When
N is large, the nonlinear advection term in the equation of motion may be neglected.
This case has been studied by Moffatt (1967). Here we make no particular assumption
aboiut the size of N, although we have in mind the case where N is moderate or large
so that the magnetic field is important. We shall, however, place restrictions on the size
of the Reynolds number and magnetic Reynolds number. We take the former to be
large, so that large-scale motions (but not small-scale turbulence) may be treated as
inviscid, while the latter is assumed to be small, so that perturbations to the applied
magnetic field may be neglected. The second assumption allows us to write Ohm’s law
in the form

J¯σ(®¡Φ­u¬B), (2.2)

where Φ is the induced electrostatic potential and B is the uniform imposed magnetic
field. If u is known then Φ and J are determined by the divergence and curl of (2.2)
respectively:

~#Φ¯B[ω, (2.3)

¡¬J¯σB[¡u, (2.4)

where ω is the vorticity field. Note that J, and hence the Lorentz force, is linear in u
and disappears only when the motion is uniform along the field lines. The Lorentz force
is

F¯
J¬B

ρ
¯®

uv

τ
­

σ(B¬¡Φ)

ρ
(2.5)

which yields ~#(¡¬F )¯®
1

τ

¥#ω
¥z#

. (2.6)
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The curl of the Lorentz force can therefore be written as

¡¬F¯®
1

τ
~−#[¥#ω}¥z#]¯®

1

τ

¥#a
¥z#

(2.7)

where a is the solenoidal vector potential for u and the operator ~−# is defined via the
Biot–Savart law. (For finite domains care must be taken in the definition of ~−# and
a. Here we follow the convention of Batchelor (1967, p. 86).) In a similar fashion (see
Sommeria & Moreau 1982), the Lorentz force may be written as

F¯®
1

τ
~−#[¥#u}¥z#]­¡φ, (2.8)

where the gradient term merely augments the fluid pressure.
Since Re has been assumed to be large, we shall neglect viscosity during our

treatment of isolated vortices, although it must, of course, be reinstated in our
discussion of turbulence. The governing equation for vorticity is therefore

Dω

Dt
¯ω[¡u®

1

τ
~−#[¥#ω}¥z#] (2.9)

while that for linear momentum is

Du

Dt
¯®¡(p*}ρ)®

1

τ
~−#[¥#u}¥z#], (2.10)

where p* is the augmented pressure. Finally, we can construct a mechanical energy
equation from the inviscid equation of motion. Noting that

F[u¯®J#}ρσ®¡[[ΦJ}ρ],

and taking the dot product of u with (2.10), this takes the form

dE

dt
¯®

1

ρσ&J#dV¯®D, (2.11)

where E is the global kinetic per unit mass. Clearly, kinetic energy is continually
dissipated as long as J is non-zero. Thus the phrase ‘magnetic damping’ is frequently
employed to describe such flows. Note that D, the dissipation integral, is zero only if
u is independent of z. This follows from (2.4).

3. Previous studies of magnetic damping

There is a wealth of literature on the magnetic damping of vortical flows, particularly
in the context of MHD turbulence. We shall postpone our discussion of the
experimental and numerical studies of turbulence until §6. Here we restrict ourselves
to three theoretical papers which are central to the subsequent discussion. The first is
that of Moffatt (1967).

Moffatt examined the decay of turbulence in a strong magnetic field (N( 1). He did
this by taking the Fourier transform of the linearized equation of motion, finding the
time dependence of the transform, and then reconstructing the behaviour of u(t) by
taking the inverse transform subject to isotropic initial conditions and a suitable initial
energy spectrum. He found that, for τ! t! l}u, the turbulence kinetic energy decays
as (t}τ)−"/#, while the turbulence becomes increasingly two-dimensional in the sense
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that the flow is independent of xs. Of course, this is precisely what is seen in practice.
Curiously, though, he observed an increase (rather than the expected decrease) in u#s.
The kinetic energy is, in Moffatt’s terminology, ‘channelled’ into the component
parallel to B. Any theory of MHD turbulence developed here should, in the limit of
large N, reproduce EC t−"/#, as well as the paradoxical growth in u#s. (In fact, we shall
offer an explanation for the growth in u#s based on our model problem analysed in §4.)

Sommeria & Moreau (1982) were, like Moffatt, concerned with MHD turbulence.
They argued that the known tendency of turbulent structures to lengthen in the
direction of B could be attributed to a diffusion-like process associated with (2.9). In
particular, they suggested that provided ls ( lv then (2.9) becomes

Dω

Dt
Cω[¡u­

l #v
τ

¥#ω
¥z#

. (3.1)

The implication is that vorticity tends to diffuse in a direction parallel to the magnetic
field. Whether or not this diffusion produces any significant lengthing of ls presumably
depends on the size of N. When N is small, the vortex lines stretch and twist on a time
scale of l}u, which is much smaller than τ, and it is difficult to infer much from (3.1).
Conversely, when N is large the nonlinear terms vanish and (3.1) becomes a simple
diffusion equation. We would then expect ls to increase at a rate

ls C lv(t}τ)"/#. (3.2)

Expression (3.1) can be justified formally, for cases where ls ( lv, by taking a two-
dimensional Fourier-transform of (2.9) in the (x, y)-plane. The diffusion coefficient
then becomes (k#τ)−" where k is the wavenumber, k#

x
­k#

y
. Note, however, that it is the

Fourier-transform of ω which diffuses, rather than ω itself. Note also that there is no
formal justification of (3.1) in cases where ls C lv. Nevertheless, (3.1) provides a
powerful way of visualizing the influence of B on the vorticity field. As noted by
Sommeria & Moreau (1982), this pseudo-diffusion is the last vestige of Alfve!n wave
propagation in the limit of Re

m
U 0.

An alternative, global, view of magnetic damping has been provided by Davidson
(1995). Unlike Moffatt or Sommeria & Moreau, Davidson was less concerned with
turbulence than with the damping of large-scale motions such as isolated jets and
vortices. The Reynolds number was taken to be high and so the inviscid equations of
motion were used. However, as we shall see in §6, it is not difficult to extend the
arguments to real viscous fluids. (Of course, viscous dissipation is an essential feature
of any turbulent flow.)

Now, like Sommeria & Moreau (and indeed many others), Davidson noted that
vorticity tends to propagate along the magnetic field lines. However, he attributed this
to the need to conserve momentum in the face of a continual decline in kinetic energy.
The argument may be established using linear momentum (in infinite domains) or
angular momentum. We shall follow the latter line of argument.

Davidson starts with the observation that the Lorentz force cannot create or destroy
the component of global angular momentum in the direction of B. This follows from

(x¬F)[B¯ ρ−"[(x[B)J®(x[J)B][B¯®(B#}2ρ)¡[[x#v J ]

which integrates to zero over V.
Now in some geometries, such as flow in a sphere, the mechanical forces do not alter

the global angular momentum of the fluid. Since the Lorentz force also leaves Hs

unaltered, we conclude that Hs is conserved, despite the continual fall in energy
demanded by (2.11). We might characterize such flows as conserving angular
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momentum in the face of continual Joule dissipation. This places a strong constraint
on the way in which the flow may evolve. In particular, the magnetic damping cannot
completely destroy the flow, but rather it must redistribute the angular momentum in
such a way that E continually declines. The nature of this redistribution may be
deduced from (2.4), which when combined with (2.11) yields the estimate

dE

dt
C®0lvls1

#E

τ
. (3.3)

Evidently, if the flow is to avoid destruction, as it must when Hs is conserved, then the
ratio ls}lv must continually increase. This argument is, of course, in accord with the
predictions of Moffatt (1967) and Sommeria & Moreau (1982). However, unlike the
local diffusion argument, or Moffatt’s analysis, it is not restricted to large values of N.
It is valid for any N, and so covers cases where the governing equations are nonlinear.

We conclude this section by noting that Davidson’s analysis produces particularly
simple results when applied to flow in a sphere. This is important as it provides the
starting point for our analysis of MHD turbulence. We start by noting that
conservation of Hs, in conjunction with the Schwarz inequality, places a lower bound
on the kinetic energy of the flow:

E&H #s 5 92&x#v dV: .
Thus any flow with non-zero Hs must evolve to a steady state with finite kinetic energy.
By virtue of (2.11) and (2.4) this final state must be strictly two-dimensional. Evidently,
any angular momentum normal to the magnetic field is destroyed by the Lorentz force,
leaving a flow consisting of one or more columnar eddies orientated parallel to the
magnetic field. The rate of destruction of the transverse components of angular
momentum is readily established. For a domain of arbitrary shape, the global magnetic
torque is given by

T¯
1

2ρ&
V

(x¬J ) dV¬B¯®
Hv

4τ
®

σ

2ρ ( ,
S

Φx¬dS*¬B.

The first equality in the expression above is a standard result arising from [2x¬(J¬B)]
i

¯ [(x¬J )¬B]
i
­¡[( f

i
J ) where f

i
is [x¬(x¬B)]

i
(see, for example, Jackson 1962)

while the second comes from substituting for J using (2.2) and then expanding the
triple product x¬(u¬B). For the particular case of a sphere, the surface integral
vanishes and so the global angular momentum equation becomes

¥H
¥t

¯®
Hv

4τ

Equations (1.1) and (1.2) then follow:

Hs ¯ const., Hv(t)¯Hv(0) exp [®4t}τ].

As expected, Hs is conserved, while Hv decays exponentially on a time scale of 4τ. (The
physical explanation for the conservation of Hs is given in Davidson 1995.)

The simplicity of this inviscid result is rather surprising, particularly as it applies for
any value of N and so is valid when the stretching and twisting of vorticity is more
vigorous than damping or pseudo-diffusion by B. The nonlinearity of the local
equations of motion has been circumvented through the use of global quantities and,
in particular, the global angular momentum. One cannot help but notice the striking
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similarity between this result and the known tendency of a magnetic field to elongate
turbulent eddies in the direction of B, ultimately producing purely two-dimensional
turbulence in the limit of large N. This ‘model problem’ is the starting point for our
analysis of MHD turbulence. Of course, the first step is to introduce a small but finite
viscosity. However, before doing this we shall look at the damping of inviscid isolated
vortices, orientated either parallel or perpendicular to B. We shall see that, as in the
discussion above, global angular momentum holds the key to the behaviour to these
flows. We start with transverse vortices.

4. Magnetic damping of transverse vortices

We now temporarily abandon flow in a sphere and consider the simplest possible
configuration in which B is normal to the axis of rotation. Suppose our flow is strictly
two-dimensional, confined to the (x, z)-plane, and bound by the cylindrical surface
x#­z#¯R#. We are interested particularly in isolated vortices whose characteristic
radius, δ, is much less than R. We shall take the vortex to be initially axisymmetric and
subject to a uniform magnetic, B, imposed in the z-direction. Once again, we shall find
that global angular momentum provides the key to determining evolution of the flow.

Since B and ω are mutually perpendicular the electrostatic potential is zero, and so
(2.5) gives the Lorentz force and magnetic torque as

F¯®(u
x
}τ) eW

x
, (4.1)

T
y
¯®τ−"&zu

x
dV¯®H

y
}2τ. (4.2)

Here H
y

is the global angular momentum which may be expressed either in terms of
u or else in terms of the two-dimensional streamfunction, ψ :

H
y
¯&(zu

x
®xu

z
) dV¯ 2&zu

x
dV¯ 2&ψdV

(ψ is the y-component of the vector potential, a). It follows immediately that, even in
the nonlinear regime, the angular momentum decays in a remarkably simple manner :

H
y
(t)¯H

y
(0) e−t/#

τ. (4.3)

Of course, this is the two-dimensional counterpart of (1.2). It is tempting to conclude,
therefore, that the vortex decays on a time scale of 2τ. However, this appears to
contradict (2.9) which, in the present context, simplifies to

Dω

Dt
¯®

1

τ
~−#[¥#ω}¥z#]. (4.4)

(For simplicity we drop the subscript on ω.) In the spirit of Sommeria & Moreau (1982)
we might write this in the form

Dω

Dt
C

δ#

τ

¥#ω
¥z#

and so we might anticipate (correctly) a continual diffusion of vorticity along the z-
axis. In the limit of large N we have the simple diffusion equation,

¥ω
¥t

C
δ#

τ

¥#ω
¥z#
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which suggest that the cross-section of the vortex distorts from a circle to a sheet on
a time scale of τ. If this picture is correct, and we shall see that it is, this distortion
should proceed in accordance with (3.2), and so we would expect l

z
to increase as

l
z
C δ(t}τ)"/#. (4.5)

This elongation of the eddy will cease only when the influence of the boundary is felt.
We therefore have two conflicting views. On the one hand, (4.3) suggests that the flow
is annihilated on a time scale of 2τ. On the other hand (4.5) suggests a continual
evolution of the vortex until such time as the boundary plays an important role. This
will occur when l

z
CR, which requires a time of the order of (R}δ)# τ. We shall now

show how these two viewpoints may be reconciled, and en route we shall shed some
light on Moffatt’s ‘channelling’ of kinetic energy into the z-component of motion.

Consider first the linear case where the magnetic field is relatively intense, so that
N( 1. We further simplify the problem by insisting the boundaries are remote (R( δ)
so that we may consider flow in an infinite domain. This greatly simplifies the algebra,
but at a cost. In order that all relevant integrals converge, particularly the angular
momentum, we require that the integral of ψ converges and this limits our possible
choice of initial conditions. (If the integral of ψ converges initially, then it subsequently
converges for all time.) However, this sub-class of flows will suffice to show the general
behaviour.

Consider the Fourier transform

Ψ(k
x
,k

z
)¯ 4&

¢

!

&
¢

!

ψ(x, z) cos (xk
x
) cos (zk

z
) dxdz.

Then (4.4), in the form

¥ψ
¥t

¯®
1

τ
~−#

¥#ψ
¥z#

(4.6)

requires that Ψ decays according to,

Ψ(k
x
,k

z
)¯Ψ

!
(k) e−(cos

#φ)t
W
; cosφ¯k

z
}k. (4.7)

Here tW is the dimensionless time t}τ, k is the magnitude of k, and Ψ
!
is the transform

of ψ at t¯ 0. The inverse transform then gives

ψ(x, t)¯π−#&
¢

!

&
π/#

!

e−(cos
#φ)t

W
cos (xk

x
) cos (zk

z
)Ψ

!
(k)kdkdφ (4.8)

which at large times (t( τ) simplifies to

ψ(x, t)¯
1

2π(πtW )"/#&
¢

!

e−k
#
z
#
/%t

W
cos (xk

x
)Ψ

!
(k)kdk. (4.9)

(See Davidson 1995 for a discussion of the asymptotic behaviour of integrals of the
form (4.8).) Evidently, for t( τ, ψ(x, t) adopts the form

ψ(x, t)C tW−"/#F(z}tW "/#,x), (4.10)

where F is determined by the initial conditions. It would appear, therefore, that the
arguments leading to (4.5) are substantially correct. An initially axisymmetric vortex
progressively distorts into a sheet-like structure, with a longitudinal length scale given
by (4.5). Note that (4.10) implies that u

x
' u

z
while u

z
C tW−"/#. It follows that the kinetic

energy of the eddy is progressively ‘channelled’ in the z-component of motion and that
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B

x z/(t/τ)1/2

F 1. Magnetic damping of a transverse vortex at high N : the streamfunction at large times of
an initially circular vortex. The z-axis is scaled by (t}τ)"/#, so that the vortex has, in fact, developed
a sheet-like structure. Note the reverse eddies either side of the centreline.

the energy, E, declines as EC (t}τ)−"/#. Interestingly, both results are reminiscent of
Moffatt’s (1967) analysis of MHD turbulence.

Let us now consider a specific example. Suppose that the initial eddy structure is
described by

ψ
!
(r)¯Φ

!
e−r

#
/δ# ; r#¯x#­z#. (4.11)

Then (4.9), which is valid at large times, may be integrated to give

ψ(x, t)¯
Φ

!

(πtW )"/#
ζ

x#

F(ζ) ; ζ¯
x#

δ#­z#}tW
(4.12)

where G is Kummer’s hypergeometric function,

G(ζ )¯M(1, "
#
,®ζ ).

Now expressions (4.10) and (4.12) seem to contradict (4.3), which predicts that the
angular momentum decays as exp (®t}2τ). However, (4.12) has an interesting
property. For t( τ, the global angular momentum, H

y
, is

H
y
¯

4Φ
!
δ#

π"/#
&

¢

!

(1­x#)−"/#&
¢

!

ζ−"/#G(ζ ) dζdx.

However, this integrates to zero since

&
¢

!

ζ−"/#G(ζ ) dζ¯ 0.

It would appear, then, that the structure of the flow at large times is such that the
angular momentum is zero. The reason for this can be seen from figure 1 which shows
the shape of ψ for t( τ. Regions of reverse flow occur either side of the centreline of
the vortex. This reverse flow has a magnitude which is just sufficient to cancel the
angular momentum of the primary eddy.

These reverse eddies arise from a redistribution of momentum via the pressure
forces. This may be seen from the linear momentum equation,

¥u
¥t

¯®¡ 0pρ1®
u
x

τ
eW
x
.
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Initial vortex

Reverse
flow

δup due to pressure
forces

δuF due to Lorentz
force

δu = δup+δuF

u

F 2. Magnetic damping of a transverse vortex at high N. The reverse flow arises from
pressure forces acting outside the initial vortex.

Negative vorticity

B

B

N (1

N'1

B

B

Negative vorticity

F 3. Magnetic damping of a transverse vortex at low and high N : a schematic of the evolution
of an initially circular vortex. At low N the vortex remains nearly circular. At high N it develops a
sheet-like structure.

In a time δt the velocity changes partially as a result of pressure forces and partially as
a result of the Lorentz force. The latter contribution is

δu
F

¯®
δt

τ
u
x
eW
x
.

Of course such a velocity increment contravenes continuity and it is the role of the
pressure gradient to enforce conservation of volume. The difference between δu

F
and

the complete change in velocity, δu, is shown schematically in figure 2. Clearly, it is the
pressure force which induces the reverse flow above and below the symmetry axis.

We conclude, therefore, that the structure of the flow at large times is long and
streaky, comprising vortex sheets of alternating sign. In short, the vorticity diffuses
along the B-lines in accordance with (4.5) while simultaneously adopting a layered
structure which has zero net angular momentum, thus satisfying (4.3).

Let us now consider the other extreme of a weak magnetic field. When N is small or
moderate the pseudo-diffusion of vorticity is much slower than advection. The problem
is then a nonlinear one. We have been unable to find an exact solution of (4.4) in such
cases. However, (4.3) still applies so that the angular momentum must disappear on a
time scale of τ. It seems plausible that a structure such as that shown in figure 3
develops. That is, regions of negative vorticity grow, as in the large-N solution, but
these are immediately swept around by the primary eddy to form a spiralled structure.
Eventually, as the flow slows down, the value of N will rise and pseudo-diffusion will
develop in accordance with (4.6).

In §§6 and 7 we shall see that this simple model problem provides one possible
interpretation for the behaviour of MHD turbulence at high N. First, however, we look
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at isolated vortices where B is aligned with the axis of rotation. Again, angular
momentum holds the key to the development of the flow. This time, however, the
behaviour is quite different.

5. Magnetic damping of parallel vortices

We now examine the damping of an isolated vortex whose axis is aligned with B. As
before, we look separately at the high- and low-N limits. We are interested mainly in
the general structure of these flows, in the anticipation that this will help us interpret
our results for MHD turbulence. For simplicity, we restrict ourselves to axisymmetric
vortices, described in terms of cylindrical polars (r, θ, z), with B parallel to z. As in §4,
we neglect viscosity. Also, we shall assume that initial conditions are such that the
integral of the angular momentum converges at t¯ 0. (If this integral converges at
t¯ 0, then it converges for all t" 0.) Aspects of this problem have been touched upon
by Davidson (1995).

Suppose we have an isolated region of intense swirl, of characteristic radius δ, in an
otherwise quiescent liquid. We may uniquely define the instantaneous state of the flow
using just two scalar functions: Γ, the angular momentum, and Ψ, the Stokes
streamfunction. These are defined through the expressions

u¯uθ­u
p
¯ (Γ}r) eW θ­¡¬[(Ψ}r) eW θ], (5.1)
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Note that the velocity has been divided into azimuthal and poloidal components
(subscripts θ and p). The Lorentz force, which is linear in u, may be similarly divided,
giving
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Here σBφ is the Stokes streamfunction for J
p
, which, by virtue of Ohm’s law, is related

to Γ by
~#

$

φ¯®¥Γ}¥z. (5.5)

We may now write down the governing equations for Γ and Ψ. These are the
azimuthal components of the momentum and vorticity transport equations re-
spectively:
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Note the appearance of the ubiquitous pseudo-diffusion terms. We might anticipate
that angular momentum propagates along the magnetic field lines, and we shall see that
this is substantially correct.

It is also useful to construct energy equations for the kinetic energies of the
azimuthal and poloidal motions. These may be obtained by taking the product of u
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with the appropriate components of the momentum equation. It is not difficult to show
(see Davidson 1995) that

dEθ

dt
¯®&u#
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r
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, (5.8)
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The first term on the right of these equations represents the familiar exchange of energy
between Eθ and E

p
, reflecting the fact that a swirling vortex hoop can lower its

azimuthal energy, Eθ, by centrifuging itself radially outward. This energy transfer
underlies Rayleigh’s centrifugal instability. The remaining two terms arise from the
Lorentz force. They are, of course, negative and represent Joule dissipation. These
energy equations are useful as they yield the following estimates :
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where t
p

is the turnover time of the poloidal motion, ω−"
θ .

We shall now draw some general conclusions from (5.6)–(5.11). First, it is apparent
from (5.6) that global angular momentum is conserved:

IΓ ¯&ΓdV¯ const. (5.12)

This is a special case of (1.1) and may be contrasted with the angular momentum of
a transverse vortex. Secondly, for confined domains the energy of the flow has a lower
bound. Specifically, the Schwarz inequality gives

Eθ & I #Γ}2&r#dV. (5.13)

Thirdly, as noted by Davidson (1995), any initial condition must evolve to a steady
state of the form (0, uθ(r), 0). This is true for any value of N, and requires only that the
flow is confined. This result follows directly the energy equations (5.8) and (5.9), and
from the energy bound (5.13). That is, we know that the flow eventually reaches a
steady state with non-zero Eθ, at which time the Joule dissipation must vanish. Yet the
dissipation disappears only when u

r
and ¥Γ}¥z are both zero. This is a special case of

the three-dimensional result of §3.
For infinite domains (5.13) does not apply. However, we can still use conservation

of angular momentum to determine the manner in which the flow evolves. Combining
(5.10) and (5.11) we have
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Thus the total energy declines as
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)#dtW : .
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If angular momentum is to be conserved then there are only two ways in which this
decline in energy can be accommodated. Either l

z
increases with time to reduce the

dissipation, thus avoiding the exponential decline in energy, or else the angular
momentum centrifuges itself radially outward, allowing the energy to decline despite
the conservation of IΓ. We shall see that axial spreading of angular momentum is
typical of high-N flows, while the radial spreading of angular momentum is
characteristic of low-N flows.

Let us now consider separately the limits of high and low N. When N is large, the
azimuthal and poloidal motions are virtually decoupled. This follows from (5.10) and
(5.11). Specifically, N is of the order of t

p
}τ, so that when N is large the energy

exchange terms are negligible by comparison with the Joule dissipation. If E
p

is initially
small (of the order of N−"Eθ), it remains small. The flow is then governed by the simple
linear equation
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We expect, therefore, that any localized region of swirl will diffuse along the magnetic
field lines, at a rate determined by

l
z
C δ(t}τ)"/#. (5.15)

As in the previous section, we may confirm this by taking the Fourier transform of
(5.14). Suppose that the flow is unbounded and let U be the first-order Hankel-cosine
transform of uθ :
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Then (5.14) shows that U decays as
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As before, tW is the dimensionless time t}τ, U
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the magnitude of k. We can now determine Γ by taking the inverse transform, which
yields
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We are interested particularly in the asymptotic form of Γ at large times. To that end
it is convenient to introduce a new variable

q¯ ("
#
π®φ) t"/#.

If we now consider the limit of large tW , then (5.16) simplifies to
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This confirms that, at large times, the distribution of angular momentum is of the form

Γ(x, t)¯ (t}τ)−"/#F(r, z}(t}τ)"/#). (5.18)

Note the similarity between (5.18) and the evolution of ψ for two-dimensional
transverse vortices. As expected, the angular momentum propagates along the z-axis
at a rate governed by (5.15), but decays according to uθ C (t}τ)−"/#. The energy of the
vortex therefore declines at a rate

EC (t}τ)−"/#
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F 4. Magnetic damping of a parallel vortex at high N: H(ζ ), the distribution of swirl with
radius at large times (see equation (5.19)). Note the reverse rotation at large radii.
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F 5. Magnetic damping of a parallel vortex at high N. The figure shows schematically the
structure of the flow at large times.

which is exactly the same as for the transverse vortex of §4.
By way of an example suppose that, at t¯ 0, we have a spherical blob of swirling

fluid, so that our initial condition is

Γ
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and so (5.17) may be integrated to give
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here H(ζ ) is the hypergeometric function

H(ζ )¯M(&
#
, 2,®ζ ).

The shape of H(ζ ) is shown in figure 4. Curiously, at large ζ the function H becomes
negative (HC®ζ−&/#}2π"/#), so that the primary vortex is surrounded by a region of
counter-rotating fluid. This was predicted in Davidson (1995) and may be attributed
to the way in which the induced currents recirculate back through quiescent regions
outside the initial vortex. We conclude, therefore, that the asymptotic structure of a
vortex aligned with B is as shown schematically in figure 5. It is long and elongated,
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B B

N <<1

F 6. Magnetic damping of a parallel vortex at low N. The vortex will disintegrate through
hoops of swirling fluid centrifuging themselves radially outward.

cigar-like in shape, and quite different in structure to the transverse vortex shown in
figure 3. Curiously, though, despite the fact that the two classes of vortices adopt very
different structures, their energies both decay as (t}τ)−"/#.

We now turn our attention to the case where N is low. Our energy equations now
suggest that Joule dissipation is negligible on time scales of the order of t

p
, so the flow

evolves in accordance with the undamped Euler equations. Our initial blob of swirling
fluid, which is centrifugally unstable, will centrifuge itself radially outward. The
experiments of the Japan Society of Mechanical Engineers (1988), and the
computations of Davidson (1993), suggest that this occurs through the angular
momentum organizing itself into one or more ring-shaped vortices. These propagate
radially outward with the characteristic mushroom-like structure of a thermal plume.
This is shown schematically in figure 6.

The formation time for these plume-like structures is of the order of the turnover
time of the original vortex. The picture which emerges at low N, therefore, in one in
which the vortex breaks up on a time scale of one turnover time, and in a manner quite
unaffected by the magnetic field. The role of B is merely to provide relatively weak
dissipation which reduces the energy of the flow by an amount CNEθ during the
lifetime of the original vortex.

We now turn our attention to MHD turbulence.

6. The role of angular momentum in MHD turbulence

We have already seen, in §§1 and 2, that the global angular momentum of fluid in
a uniform magnetic field behaves in a particularly simple way. We shall use this to
estimate the rate of decay of energy and the rate of growth of anisotropy in MHD
turbulence. However, before looking at the implications of (1.1) and (1.2), it is useful
to consider first the role of angular momentum in the decay of conventional, isotropic
turbulence. This relationship was first pointed out by Landau & Lifshitz (1959) in a
reinterpretation of Kolmogorov’s t−"!/( decay law. We start with Kolmogorov’s
derivation. Our review is brief, but a more detailed discussion may be found in Monin
& Yaglom (1975), Hinze (1975), or Lesieur (1987). Kolmogorov’s starting point was
Loitsyansky’s integral.

Loitsyansky asserted (incorrectly as it turns out) that an integral of the longitudinal
velocity correlation function Q

ll

L¯&
¢

!

r%Q
ll
dr (6.1)
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is conserved in isotropic turbulent flow. If � is a typical velocity of the large scales, and
l the integral length scale, this gives

�#l &¯ const. (6.2)

Kolmogorov took advantage of this result. In addition, he invoked the concept of the
energy cascade, according to which the energy dissipation rate per unit mass is C �$}l,
so that

®
d�#

dt
C �$}l. (6.3)

Combining these results yields an energy decay rate of

�#C t−"!/(. (6.4)

This power law is, in fact, reasonably in line with the experimental evidence. Now the
invariance of Loitsyansky’s integral, L, was asserted on the basis of a dynamic
equation for the velocity correlation function (the Ka! rma! n–Howarth equation) which
is perfectly rigorous. However, it also relies on the assumption that velocity correlations
decay rapidly with distance, so that certain surface integrals could be neglected (see, for
example, Hinze 1975). We shall return to this point shortly. In the meantime, we note
that Landau & Lifshitz (1959) gave a simpler physical explanation for the conservation
of L, based on the conservation of angular momentum. (This was later extended by
Lumley 1966). Their argument went as follows.

Suppose an isotropic turbulent flow is contained in a sphere whose radius, R, is very
much larger than the integral scale of the turbulence, l. The net angular momentum of
the fluid need not be conserved because of shear stresses at the boundary. However, as
the radius of sphere increases, this surface effect becomes less important and ultimately,
for R( l, the surface stresses will not influence the motion on the time scale of its
decay. In this sense, then, angular momentum is conserved. Consider now one
component of angular momentum, say H

z
:
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Since the integral of u
y

is zero we can rewrite this in the form
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However, we could equally have expressed H
z
in terms of yu

x
, and so it follows that
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Adding all three components of H #, and noting that terms of the type xx«u
x
u!
x

integrate to zero, we obtain

H #¯®&& [(x®x«)#u[u«] dV «dV.
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Finally, we ensemble average u[u« for each pair of points separated by a fixed distance,
r¯x®x«, to give

H #¯®& 9 &r#u[u«dr:dx. (6.6)

The implication is that

I
AV

¯ 9®&r#u[u«dr:
AV

¯H #}V (6.7)

is an invariant of the motion. (The subscript AV indicates a spatial average over V.)
The final step in Landau & Lifshitz’s argument was to assume that the velocity
correlation u[u«(r) decays rapidly with rrr, so that far-field contributions to the integral

&r#u[u«dr

are small. In such a situation only those velocity correlations taken close to the
boundary are aware of the presence of this surface, and in this sense the turbulence is
approximately homogeneous. To leading order in l}R we then have

H #¯®V&r#u[udr¯VI. (6.8)

For the particular case of isotropic turbulence, I¯ 8πL (see Hinze 1975) and so
conservation of angular momentum implies conservation of Loitsyansky’s integral and
the t−"!/( decay law follows.

The problem with these arguments is, of course, that the velocity correlation

Q
ij
(r)¯ u

i
(x) u

j
(x­r)

need not decay that rapidly with distance. (Typically it decays at r−&.) There are three
consequences of this. First, the integral I (for homogeneous turbulence) or L (for
homogeneous isotropic turbulence) need not converge. Secondly, the last step in
Landau & Lifshitz’s argument cannot be justified. That is, while conservation of
angular momentum implies that I

AV
is an invariant ((6.7) makes no assumption about

Q
ij
), we cannot infer that I is a dynamical invariant. Thirdly, Loitsyansky’s proof that

L is an invariant is flawed. In fact, it is well known that Loitsyansky’s integral is, in
general, time-dependent. These last two points are closely related. (To avoid the
difficulty associated with the boundary r¯R in Landau & Lifshitz’s derivation of
(6.8), Monin & Yaglom (1975) suggest a procedure in which the local angular
momentum density is multiplied by an exponential decay factor exp (®αr#) before
integration. The limit of αU 0 is then taken. However, this leads to the same conclusion
as Landau & Lifshitz’s argument.)

The reason why Q
ij

decays algebraically with r rather than exponentially, as was
assumed in early theories of turbulence, is related to the incompressibility of the fluid.
The pressure forces, which enforce conservation of volume, can instantaneously
propagate information to all points within the medium. A fluctuation in velocity at one
location is immediately felt everywhere in the fluid due to the pressure forces. These,
in turn, induce accelerations in the far field which give rise to long-range velocity
correlations. This was investigated by Batchelor & Proudman (1956).

As noted in Hinze (1975), the spatial rate of decay of Q
ij

depends partially on
whether the turbulence is isotropic and partially on the form of the energy spectrum,
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E(k), at small k. When E(k)Ck%, which is usually taken to be the case for
homogeneous turbulence, Q

ij
decays as r−& (Batchelor & Proudman 1956). This is

sufficiently rapid for moments of the form

I
ijmn

¯&Q
ij
r
n
r
m

dr

to converge (so that I and L converge) but not fast enough for I, L or I
ijmn

to be
invariants of the motion. (I

ijmn
is a dynamical invariant when Q

ij
decays exponentially

with r.) Here the convergence of I
ijmn

is a consequence of symmetry, whereby terms of
order r−& integrate to zero. When the turbulence is isotropic, and ECk%, Q

ij
decays as

r−', or faster. Again, this ensures that I, L and I
ijmn

converge but, as with the
anisotropic case, it does not ensure that they are invariants of the flow.

If E(k)Ck#, on the other hand, Q
ij

decays as r−$. Such a spectrum has been
suggested by Saffman (1967) who noted that I and L diverge for such a flow, but that
one could establish a new class of invariants related to linear (rather than angular)
momentum. Indeed, such a spectrum seems to rely on the global linear momentum
being non-zero, which raises interesting questions about its applicability to flow in
finite domains. We shall return to this case later. In the meantime, however, we shall
restrict ourselves to ECk% spectra.

Now it turns out that, despite the variation of L due to long-range velocity
correlations, Kolmogorov’s t−"!/( law is not too far out of line with the experimental
data. Experiments suggest that the energy decays as t−".#&–t−".$' (Lesieur 1987). As
Hinze (1975) and Lesieur (1987) note, this is because Loitsyansky’s integral changes
only very slowly with time, reflecting the rather weak influence of the long-range
velocity correlations. The best current estimates of the decay law, which rest on the use
of intricate phenomenological closure schemes, suggest a t−".$) decay (Lesieur 1987),
which is not that different from Kolmogorov’s t−".%$. As Lesieur notes ‘an assumption
like the invariance with time of L would not greatly alter the decay of turbulence’.

We shall now examine the implications of (1.1) and (1.2) for MHD turbulence. We
shall assume an energy spectrum of the form ECk% at small k, and follow an argument
analogous to that of Landau & Lifshitz (1959). Initially, we shall make no assumption
about the long-range behaviour of Q

ij
. Subsequently, however, we shall tentatively

explore the consequences of assuming that the long-range velocity correlations are
weak, as seems to be the case in conventional isotropic turbulence. Of course, in MHD
turbulence, we have to contend with the additional long-range forces which arise from
B. However, we argue in §7 that in axisymmetric turbulence these additional forces are
no more dangerous than the pressure forces. For example, as in conventional
homogeneous turbulence, Q

ij
(r) decays as r−&, and integrals such as I converge because

terms in r−& cancel. (Unlike anisotropic turbulence in rotating or stratified media,
velocity fluctuations in MHD turbulence are not propagated by internal waves, but
rather by pseudo-diffusion, which is less efficient at dispatching energy to the far field.)

Our starting point is the same as that of Landau & Lifshitz (1959). Suppose that our
fluid is held in a sphere whose radius is much larger than the integral scale of the
turbulence. We assume that the turbulence is initially isotropic and that the Reynolds
number, Re, is high. We expect the parallel integral scale so increase with time, and so
we limit our time (or choose our sphere radius) to be such that (ls)max

'R. We are then
free to ignore surface effects, such as drag due to shear stresses, Ekman pumping, or
concentrated dissipation in Hartmann layers. (Note that the restriction (ls)max

'R
means that we cannot capture the final stages of decay when B is large, i.e. situations
where the turbulence becomes pseudo-two-dimensional.)
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It is convenient to define the interaction parameter in terms of the perpendicular
integral scale,

N(t)¯ (lv}uv)}τ¯ τ
t!
}τ.

We shall place no limit on N, other than N'Re. Of course, as the turbulence decays,
N will increase along with the eddy turnover time, τ

t!
. Curiously, though, this does not

necessarily imply that the Lorentz forces become relatively more important. From (2.8)
we have,

F}(u[¡u)CN(lv}ls)#.

Evidently, the relative size of the Lorentz and inertial forces depends not only on the
instantaneous value of N, but also on the degree of anisotropy. Consider, for example,
the case where N

!
( 1. Initially, the Lorentz forces are dominant and the problem is

a linear one. We might expect that both parallel and perpendicular eddies will evolve
in a manner similar to the isolated vortices discussed in §§4 and 5. In such a case
the energy of the flow decays as EC (t}τ)−"/# while anisotropy develops according to
(ls}lv)C (t}τ)"/#. It follows that

N(t)CN
!
(t}τ)"/%,

F}(u[¡u)CN
!
(t}τ)−$/%.

Thus, despite the fact that N increases as t"/%, the Lorentz forces become weaker with
time and eventually nonlinear behaviour will set in (Moreau 1990).

It should also be borne in mind that the smallest scale of the turbulence, the
Kolmogorov microscale, has a turnover time much less than τ

t!
, of Re−"/#τ

t!
. Since we

are assuming that N'Re, as is invariably the case in practice, the Lorentz forces act
only on the largest scales of the turbulence. Two quite different pictures then emerge,
depending on whether N is large or small. When N is large the primary source of
dissipation is the Joule effect, and this operates only on the large scales. As the motion
decays, the energy spectrum E(k) ‘collapses ’ from the low-k end. The smaller scales are
only aware of the magnetic damping to the extent that their supply of energy via the
energy cascade is diminished. When N is small, on the other hand, the primary source
of dissipation is viscous shear acting at the smallest scales. Here the energy spectrum
collapses from the high-k end, with the largest scales being the last to decay.

With this background in mind we now turn to the main result of this section. Our
starting point is (6.5) and (6.6), applied this time to MHD turbulence. For the parallel
and perpendicular components of H we have

H #s ¯®& 9 &r#v uv[u!v dr:dx, (6.9)

H #v ¯®2& 9 &r#s uv[u!v dr:dx (6.10)

and H #v ¯®2& 9 &r#v us[u!s dr:dx. (6.11)

Combining this with (1.1) and (1.2) we obtain the key result of this section:
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It should be emphasized that these are fully nonlinear results, applicable to any value
of N. So far we have made no assumption about the decay of Q

ij
at large r. If (but only

if) the long-range velocity correlations are weak, so that the inhomogeneous region
near the surface is small, we have

I
"
(t)¯®&r#v uv[u!v drE I

"
(0), (6.15)

I
#
(t)¯®&r#s uv[u!v drE I

#
(0) exp [®t}2τ], (6.16)

I
$
(t)¯®&r#v us[u!s drE I

$
(0) exp [®t}2τ]. (6.17)

In such cases the behaviour of the global angular momentum gives a direct indication
of the rate of growth of anisotropy as measured by the moments of the velocity
correlations. If (6.15)–(6.17) are valid, they represent much stronger statements than
(6.12)–(6.14).

Now expressions (6.15)–(6.17) may be derived in a mathematically more formal (if
physically less revealing) manner. The method is essentially the same as that originally
used to establish the invariance of Loitsyansky’s integral for cases where the far-field
velocity correlations are very weak. The approach is to assume from the outset that the
velocity correlations decay rapidly with distance. For completeness we briefly describe
this method. It should be noted, however, that such a derivation is not rigorous because
in practice the velocity correlations could decay rather slowly with distance (i.e. as r−&).
This second derivation has the advantage, though, of showing exactly where the
assumption of small Q

ij
at large r enters into the analysis.

The starting point is to derive a dynamic equation for the correlation of the angular
momentum at two locations A and B. Let h denote the angular momentum x¬u. The
equation of motion for h

i
at the point A is
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Multiplying this by h
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at location B gives
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Here we note that h
jB

may be treated as a constant in a differentiation at point A. In
the same way we may multiply the equation of motion for h

jB
by h

iA
. Combining the

two results and then averaging gives the required correlation equation:

¥
¥t

(h
iA

h
jB

)¯ f
ij
(u, p)­h

jB
(x¬F )

iA
­h

iA
(x¬F )

jB
.

Here f
ij
(u, p) denotes symbolically all of the conventional inertial and pressure terms

which would appear on the right-hand side of such an equation in the absence of a
magnetic field. Now h

iA
h
jB

is a function of time and of ζ¯x
B
®x

A
. Integrating with

respect to ζ we have

¥
¥t&(h

iA
h
jB

) dζ¯&f
ij
(u, p) dζ­& [h

jB
(x¬F )

iA
­h

iA
(x¬F )

jB
] dζ.

However, the first integral on the right vanishes for rapidly decaying velocity
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correlations. We know this since I
ijmn

is an invariant of conventional turbulence under
such conditions. We then have

¥
¥t&(h

iA
h
jB

) dζ¯& [h
jB

(x¬F )
iA

­h
iA

(x¬F )
jB

] dζ. (6.18)

The remaining integral on the right may be simplified if we note that the magnetic
torque per unit volume may be written in the form

2ρ(x¬F )
i
¯¡[[J(x¬(x¬B))

i
]­σ[¡¬(Φx)¬B]

i

­"

#
σ¡[[(x¬B)

i
(B[x)u]®ρ(x¬u)v}2τ.

Now the first three terms on the right-hand side lead to surface integrals in (6.18).
The term involving Φ integrates to zero if we take the surface to be a sphere of large
radius, while the first and third terms lead to surface integrals involving the far-field
correlations J

i
u
j

and u
i
u
j
. Since all correlations are assumed to decay rapidly, the

surface integrals vanish. We are left with

¥
¥t&(h

iA
h
jB

) dζ¯®(4τ)−"&(h
jB

h
iAv­h

iA
h
jBv) dζ.

In particular, this gives equations for hv and hs :

¥
¥t&(hsA

hsB
) dζ¯ 0, (6.19)

¥
¥t&(hvA

[hvB
) dζ¯®(2τ)−"&(hvA

[hvB
) dζ. (6.20)

Expressions (6.19) and (6.20) lead directly to (6.15)–(6.17). Of course, a derivation of
the type given above is flawed because we have no right to assume that the velocity
conditions decay rapidly with distance. However, this second argument is useful in as
much as it does show explicitly the way in which estimates (6.15)–(6.17) depend on the
weakness of the long-range correlations.

In §8 we shall give a physical interpretation of (6.12)–(6.17) based on our study of
isolated vortices in §§4 and 5. We also explore the consequences of these relationships
for the rate of decay of energy and the rate of growth of anisotropy. First, however,
we examine the role of the Lorentz forces in establishing long-range velocity
correlations. We have in mind two particular points. First, we wish to establish whether
the integrals I

"
, I

#
and I

$
converge. Secondly, we would like to know if the long-range

correlations associated with the magnetic field are in some way more important than
those which appear in conventional turbulence. We shall see that, provided the
turbulence remains axisymmetric, the far-field influence of the Lorentz forces is no
stronger than that of pressure. We show that I

"
, I

#
and I

$
are likely to be convergent,

and that Q
ij

decays as r−&, just as in conventional, homogeneous turbulence. (The
convergence properties of these integrals could in principle depend on the manner in
which the domain is extended to infinity. Here we first integrate over a sphere of finite
radius and then let that radius tend to infinity.)

7. Long-range velocity correlations induced by the Lorentz forces

We wish to determine the influence of the magnetic field on the long-range velocity
correlations in axisymmetric turbulence. Here we adopt the same approach as that
used to establish the influence of pressure forces on the velocity correlation in
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conventional homogeneous turbulence (Batchelor & Proudman 1956). We assume
that, at some initial instant, the turbulence is axisymmetric and homogeneous and that
all velocity correlations decay exponentially with r. (This latter condition is related to
the manner in which the turbulence is set up.) We then use our equations of motion to
determine the rate of change of Q

ij
at t¯ 0. This tells us the structure of Q

ij

immediately after t¯ 0, and we take this structure to be representative of Q
ij

at all
times.

Consider the Ka! rma! n–Howarth equation for homogeneous, but not necessarily
isotropic, turbulence. This is an equation of motion for Q

ij
obtained by applying the

Navier–Stokes equation to two points, A and B. For MHD turbulence we must add
the terms arising from the Lorentz force. It is not difficult to show that, if ζ¯x

B
®x

A
,

then

¥
¥t

Q
ij
(ζ )¯

1

2πτ

¥#

¥ζ#
z

9 &Q
ij
(ζ «)

rζ®ζ «r
dζ «:­(inertial and pressure terms).

We now replace ζ by x and use T
ij
(u, p) to denote the conventional presure and inertial

terms:

¥Q
ij

¥t
¯T

ij
(u, p)­

1

2πτ

¥#

¥z# 9 &
Q!

ij

rx®x«r
dx«: . (7.1)

We are particularly interested in large values of x, and so we expand the integral in
(7.1) as a Taylor series :

& Q!
ij

rx®x«r
dx«¯ rxr−"&Q!

ij
dx«­rxr−$&(x[x«)Q!

ij
dx«

®"

#
rxr−$&(x«)#Q!

ij
dx«­$

#
rxr−&&(x[x«)#Q!

ij
dx«­… .

Now the first term on the right is zero by virtue of continuity, while the second integral
is zero for axisymmetric turbulence. This follows from the fact that, in axisymmetric
turbulence, Q

ij
may be written in the form

Q
zz

¯ (A­2F ) z#­C, (7.2)

Q
xx

¯Ax#­B, (7.3)

Q
yy

¯Ay#­B, (7.4)

Q
xz

¯Q
zx

¯ (A­F )xz, (7.5)

Q
yz

¯Q
zy

¯ (A­F ) yz, (7.6)

Q
xy

¯Q
yx

¯Axy, (7.7)

where A, B, C and F are symmetric functions of x. Combining the second and third
integrals gives

& Q!
ij

rx®x«r
dx«E "

#
rxr−&& [3(x[x«)#®x#(x«)#]Q!

ij
dx«.

For large x, equation (7.1) now simplifies to

¥Q
ij

¥t
¯T

ij
(u, p)­

1

4πτ

¥#

¥z# 9rxr−&& [3(x[x«)#®x#(x«)#]Q!
ij
dx«:­HOT. (7.8)

Evidently, the contribution to ¥Q
ij
}¥t from the Lorentz force is of order r−& (at least

at t¯ 0). This is the same as the contribution to ¥Q
ij
}¥t from the pressure forces in
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conventional, homogeneous turbulence. It follows that Q
ij

decays as r−& immediately
after t¯ 0, and it seems reasonable to suppose that Q

ij
is of order r−& for all t" 0.

(Strictly we should evaluate all the time derivations at t¯ 0 if we wish to make this
inference.)

We now turn our attention to the integrals I
"
, I

#
and I

$
. In particular, we wish to

establish whether these converge. Let Qs ¯Q
zz

and Qv ¯Q
xx

­Q
yy

. Then it is tedious,
but not difficult to show that

¥Qs

¥t
¯Ts(u, p)®

1

8πτ

¥%

¥z% 9
1

rxr: &(x«#­y«#®2z«#)Q!s dx«­HOT,

¥Qv

¥t
¯Tv(u, p)®

1

8πτ

¥%

¥z% 9
1

rxr: &(x«#­y«#®2z«#)Q!v dx«­HOT.

5

6

7

8

(7.9)

To determine whether, immediately after t¯ 0, I
"
, I

#
and I

$
converge it is necessary

only to evaluate the leading terms associated with the Lorentz force. (We know that
the pressure terms lead to convergent integrals, as in conventional turbulence, while the
higher-order terms in the Lorentz force are of order r−' and so have convergent
integrals.) To show that I

"
and I

$
converge it is necessary for

&
rxr"R!

(x#­y#)
¥%

¥z% 9
1

rxr:dV

to be finite. To show that I
#

converges, on the other hand, we require

&
rxr"R!

z#
¥%

¥z% 9
1

rxr:dV

to be finite. In fact, it is readily confirmed that both integrals are zero. This is most
easily established by writing the integrands as divergences and then integrating over a
region R

!
! rxr!R

"
. Each volume integral then becomes the difference between two

surface integrals which exactly cancel. (We omit the details as the algebra is routine.)
It appears, then, that not only are I

"
, I

#
and I

$
convergent, but that the contribution

to these integrals from the long-range velocity correlations decays as r−". In short, the
situation is precisely analogous to the effect of pressure on the integral moments I

ijmn

in conventional, homogeneous turbulence.
Now we know from experiments on the decay of isotropic turbulence that the long-

range velocity correlations are weak and do not greatly influence the decay. In our case
we have additional long-range velocity correlations arising from the magnetic field.
However, these appear to be no more potent than those arising from pressure forces
in conventional homogeneous turbulence. Therefore, we shall tentatively ignore the
influence of the long-range correlations on the decay of axisymmetric MHD turbulence.
We cannot justify this, and indeed we know that it is strictly not valid even in
conventional turbulence, as indicated by the slow evolution of Loitsyansky’s integral.
However, this does seem a reasonable starting point in what is otherwise an extremely
complex problem.

8. The decay of MHD turbulence

We now explore the consequences of assuming that the long-range velocity
correlations are weak. In particular, we use (6.15)–(6.17) to estimate the rate of growth
of anisotropy and the decay of energy. First, however, we give a physical interpretation
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of these expressions. It is convenient to rewrite (6.15)–(6.17) in cylindrical coordinates
using x as the position vector :

I
"
(t)¯®&r#Qv dxE I

"
(0), (8.1)

I
#
(t)¯®&z#Qv dxE I

#
(0) exp [®t}2τ], (8.2)

I
$
(t)¯®&r#Qs dxE I

$
(0) exp [®t}2τ]. (8.3)

When N is small the turbulence decays much faster than the characteristic time τ, so
that all three integrals are approximately constant during the decay. Let us turn,
therefore, to the more interesting case of large N. Here the eddies elongate along the
B-lines and, as the parallel integral scale grows, Qv and Qs become progressively less
dependent on z. It is clear then that the decay of I

#
is simply a manifestation of the

growth of two-dimensional turbulence. This follows from the fact that, when Qv is
independent of z,

I
#
£&Qv dxdy¯ 0.

(This integral is zero because of continuity.) Thus I
#

vanishes as the turbulence
becomes two-dimensional.

The decline of I
$

is rather more difficult to interpret. At first glance it appears to
suggest that u#

z
falls off exponentially with time. However, this contradicts Moffatt’s

(1967) observation that u#
z

actually increases. The results of §4 on the decay of
transverse vortices offer an alternative explanation. It was shown there that such
vortices develop a sheet-like structure consisting of thin interwoven layers of oppositely
signed vorticity. This structure allows the angular momentum to decline exponentially
on a time scale of τ. The ‘sheets ’ are parallel to B and the direction of the dominant
velocity, u

z
oscillates back and forth across the sheet. Such a structure could allow the

integral of Qs to fall without u#
z

becoming small, and this seems the most likely
explanation for the decay of I

$
.

Let us now introduce an energy equation for the turbulence. If E and D are the
kinetic energy and Joule dissipation per unit mass, and ε is the viscous dissipation rate
then

dE

dt
¯®ε®D. (8.4)

Equations (8.1) and (8.4) give us the estimates

El %v ls ¯ const, (8.5)

dE

dt
C®

E $/#

lv
®0lvls1

#E

τ
. (8.6)

Here we have used Ohm’s law to estimate D, and the idea of the energy cascade to
estimate ε. Note that expression (8.5) plays a role in MHD turbulence which is quite
analogous to that played by Loitsyansky’s integral in isotropic turbulence. Equations
(8.5) and (8.6) yield some familiar results in the limit of small and large N. When N is
zero the two length scales ls and lv are equal and we recover Kolmogorov’s law:

ECE
!
(1­αt}τ

t!
)−"!/(. (8.7)
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Here α is a constant of order unity and τ
t!

is the initial turnover time, l
!
}E "/#

!
. When

N is large, on the other hand, the Joule dissipation dominates and lv stays constant on
a time scale of τ. Equations (8.5) and (8.6) become

Els ¯ const, (8.8)

dE

dt
C®0lvls1

#E

τ
, (8.9)

which give ECE
!
(1­βt}τ)−"/#, (8.10)

ls C l
!
(1­βt}τ)"/#. (8.11)

Here β is another constant of order one. Once again, these results are familiar. The first
is Moffatt’s (1967) prediction for the decay of energy at large N, while the second is
Sommeria & Moreau’s (1982) result for the rate of elongation of eddies. Interestingly,
the isolated vortices analysed in §§4 and 5 also obey these laws. This is, perhaps, not
surprising as the equations of motion for N( 1 are linear, and we could consider the
evolution of the flow as comprising the superposition of many such isolated eddies each
being acted upon by Lorentz forces. It should be noted, however, that (8.8)–(8.11) are
valid only for a finite time. As noted in §6, the growth of ls is such that the rate of fall
of the Lorentz force is greater than the rate of fall of inertial forces, so that eventually,
when tCN %/$

!
τ, the removal of energy via the energy cascade becomes important.

It is reassuring that our new equation (8.5), which is the counterpart of Loitsyansky’s
integral for MHD turbulence, leads to results which are consistent with existing
theories at low and high N. Equations (8.5) and (8.6) also provide an estimate of the
effect of a small but finite Joule dissipation when N is small. Conversely, when N is
large, but not so large as to prevent the breakup of vortices over one turnover time,
they provide a first-order correction to (8.10). Let us introduce two scaled versions of
t. At small N we use t*¯ t}τ

t!
, and at large N we use tW ¯ t}τ, where N¯ τ

t!
}τ at

t¯ 0. The first-order correction to (8.7) is readily shown to be of the form

ECE
!
(1­αt*)−"!/( (1­γ

"
f(t*) tW )−"/#­O(N #),

while the first-order correction to (8.10) is

ECE
!
(1­βtW )−"/# (1­γ

#
g(tW ) t*)−"!/(­O(N−#).

Here f and g are simple algebraic functions which satisfy f(0)¯ g(0)¯ 1 and take
values between 0 and 1. These expressions may of course be matched for intermediate
values of N by choosing γ

"
¯β and γ

#
¯α, although there is no physical justification

for such a matching.
For the general case of arbitrary N equations (8.5) and (8.6) are not sufficient in

themselves to predict the decay of energy. There are three unknowns lv, ls and E, so
that a third equation, perhaps linking the length scales, is required. Nevertheless, the
introduction of (8.5), as the counterpart of Loitsyansky’s integral, seems a useful
development.

9. Decay of MHD turbulence with ECk# spectra

So far we have assumed that the energy spectrum at low wavenumber is of the form
ECk% However, Saffman (1967) has shown that, provided the net linear momentum
of the fluid is non-zero, it is possible to have ECk# spectra. In such a case
Loitsyansky’s integral diverges as the far-field correlation Q

ij
decays as r−$. Integrals

I
"
, I

#
and I

$
likewise diverge. In this final section we indicate how our arguments might
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be extended to accommodate such a case. The discussion is brief. We start with an
expression for the square of the global angular momentum in an open sphere of large
radius:

H #¯&&(x¬u)[(x«¬u«) dV «dV.

This may be rewritten in the form

H #¯®&& [(x«[u) (x[u«)®(x[x«) (u[u«)] dV «dV.

Next we introduce r¯x«®x, eliminate x«, and ensemble average the resulting
equation:

H #¯®&x
i
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i
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j
dV «dV®&x

i&r
j
u!
i
u
j
dV «dV­&x#&u

i
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i
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­&x
i&r

i
u
j
u!
j
dV «dV.

Following the argument given in §6, we now tentatively assume that the far-field
velocity correlations are sufficiently weak for us to ignore those contributions to the
inner integrals which lie outside the sphere. In that case

H #¯®&x
i
x
j
dV&Q

ij
dr®&x

i
dV&r

j
Q

ij
dr­&x#dV&Q

ii
dr

­&x
i
dV&r

i
Q

jj
dr­O(u#l %R%).

By symmetry, all terms on the right vanish except for the third, and so we obtain a
simple relationship between the square of the angular momentum and the square of the
net linear momentum:

H #¯
2

3&x#dV&Q
ii
dr. (9.1)

In a similar manner we may show that

H #s ¯&x#dV 913&Qv dr: , (9.2)

H #v ¯&x#dV 923&Qs dr­
1

3&Qv dr: . (9.3)

The permanence of Hs and the decay of Hv now give relationships for the integrals of
Qv and Qs. These are analogous to I

"
, I

#
and I

$
. (When the net linear momentum is

zero, then (9.1) gives H # as being of order u#l %R% or less, which is the source of the
integrals considered in the preceeding sections.) Expression (9.2) in conjunction with
conservation of Hs suggests that

u#v l #v ls ¯ const, (9.4)

during the decay of turbulence. This might be compared with (8.5). If (9.4) is coupled
with energy equation (8.6), then we obtain EC t−".# when N is small (Saffman’s law)
and EC t−!.& when N is large (which is the same as for ECk% turbulence).
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10. Discussion

We have identified an integral, I
"
, which is to MHD turbulence what Loitsyansky’s

integral is to isotropic turbulence. Just as Loitsyansky’s integral varies with time, so we
should not expect I

"
to be an invariant. However, if the long-range velocity correlations

are weak, as in conventional turbulence, then I
"

should evolve only slowly. It then
follows that El %v ls will be approximately constant as the turbulence decays. This
assumption, coupled to an energy equation for the turbulence, leads to results which
are consistent with existing theories, both at low N and high N.

Our picture of MHD turbulence at large values of N is essentially that described in
§§4 and 5. Vortices parallel to B elongate along the field lines forming long columnar
structures. These eddies grow as ls C t"/#, while their energy decays as EC t−"/#.
Vortices normal to B distort into sheet-like structures, thus ‘channelling’ kinetic
energy into the u#s component. At low N, on the other hand, we envisage a flow in which
the dynamics are essentially independent of the Lorentz force, but in which Joule
dissipation augments the destruction of the energy of the large scales.

Frequent comparisons are made between MHD turbulence and the pseudo-two-
dimensional turbulence found in stratified or rotating media. Indeed, some authors
point to MHD turbulence as a simple ‘prototype’ model of, for example, atmospheric
turbulence. Our view is different. When the magnetic Reynolds number is small, there
are quite fundamental distinctions between the Lorentz force on the one hand and
Coriolis and buoyancy forces on the other. For example, stratified and rotating fluids
propagate disturbances via internal waves, whereas disturbances in MHD turbulence
propagate by pseudo-diffusion. Also, the Lorentz forces destroy those components of
angular momentum which are normal to B, while the Coriolis and buoyancy forces do
not. Finally, the Lorentz force is dissipative, whereas the Coriolis and buoyancy forces
do not alter the kinetic energy of the fluid. In short, the manner in which pseudo-two-
dimensional turbulence is established is quite different in the two cases. In a rotating
fluid, for example, the two-dimensional flow arises because disturbances propagate
parallel to the rotation axis as internal waves, eventually forming Taylor columns. This
is an inviscid process. In MHD turbulence, however, it is the need to conserve Hs in
the face of continual Joule dissipation that leads to an elongation of the eddies.
Moreover, this distortion of the eddies is a diffusion process, with ls growing like t"/#,
rather than wave-like propagation where ls grows as t.

The author is indebted to two referees for their valuable comments. In particular,
one referee has noted that one of the central results of the paper (equation (6.15)) may
be obtained by alternative reasoning, i.e. by consideration of the shape of the spectrum
at small wavenumber. This viewpoint is more in line with the conventional
interpretation of the ‘permanence of the big eddies ’ as being a consequence of the
invariant shape of the spectrum at small k.
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